
Hierarchical Approaches to Reinforcement Learning

Using Attention Networks

A Dual Degree Project Report

submitted by

JOE KURIAN EAPPEN

under the guidance of

PROF. BALARAMAN RAVINDRAN

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Hierarchical Approaches to Reinforcement

Learning Using Attention Networks, submitted by Joe Kurian Eappen (EE13B080),

to the Indian Institute of Technology, Madras, for the award of the degree of Bachelors

of Technology and degree of Masters of Technology , is a bonafide record of the re-

search work done by him under my supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. Balaraman Ravindran

Research Guide

Professor

Dept. of Computer Science & Engineering

IIT-Madras, 600036

Place: Chennai

Prof. Aravind R.

Project Co-Guide

Professor

Dept. of Electrical Engineering

IIT-Madras, 600036

Place: Chennai

Date: June 2018

i

ii

ACKNOWLEDGEMENTS

I would like to thank Prof. Ravindran for introducing me to and giving me an opportunity

to work in the rapidly developing field of deep reinforcement learning. His patient

guidance along with his enthusiasm in teaching were a big part of what drew me to

this pursuit and inspired me to continue my studies further. I am also indebted to Prof.

David Koilpillai for giving me my first major opportunity to conduct research as well

as Prof. Kaushik Mitra and Prof. Aravind for their support. Finally, I would like to

thank my friends who kept me sane, my parents who were always by my side, and all

the professors who taught me during my stay at IIT Madras.

Joe Kurian Eappen

iii

ABSTRACT

While reinforcement learning (RL) has been used to solve sequential decision prob-

lems, it has always been hard to solve environments with a sparse reward feedback. This

is due to the agent often requiring a very specific series of action selections in order

to receive positive reinforcement. Two techniques used to address this issue are to use

knowledge from past problems (transfer learning) and building a hierarchy to simplify

the decision space (hierarchical reinforcement learning). In this work we ask whether we

can use ideas introduced in Rajendran et al. (2017) for transfer learning to help create a

hierarchical framework for RL. We devise an Actor-Critic based implementation of such

an approach along with a feedforward and recurrent architecture. We then examine its

strengths and weaknesses in a series of tasks created in Vizdoom and Gridworlds.

KEYWORDS: Reinforcement Learning, Deep Learning, Transfer Learning, Hierar-

chical Reinforcement Learning

iv

TABLE OF CONTENTS

THESIS CERTIFICATE i

ACKNOWLEDGEMENTS iii

ABSTRACT iv

1 Introduction 1

1.1 Reinforcement Learning . 1

1.2 Deep Reinforcement Learning . 2

1.3 Contributions . 2

2 Background 4

2.1 Reinforcement Learning . 4

2.2 Hierarchical Reinforcement Learning 4

2.3 Asynchronous Advantage Actor Critic 5

3 Related Work 7

4 Hierarchical A2T 8

4.1 Framework . 8

4.2 Updating πb . 11

4.3 Choosing the value of k . 11

4.4 Architecture . 11

4.5 Summary . 12

5 Experimental Setup 14

5.1 Gridworld Environments . 14

5.1.1 Architecture . 16

5.1.2 Experiments . 16

5.2 Doom Environments . 16

5.2.1 Custom Maps . 17

v

5.2.2 Common Parameters . 17

5.2.3 Architecture . 18

5.2.4 Experiments . 18

6 Experimental Results 20

6.1 Grid worlds . 20

6.1.1 Puddle World . 20

6.1.2 Mine World . 20

6.1.3 Room World . 21

6.2 Doom Environments . 22

7 Shortcomings and Future work 24

8 Conclusion 25

A Training Parameters 30

A.1 Architectural Choices . 30

A.2 Miscellaneous Stabilizing Tricks 30

A.3 Pretraining Environments . 31

A.3.1 Doom Skills . 31

A.3.2 Gridworld Skills . 31

B Extended analysis of HA2T 32

B.1 Major Differences from A2T . 32

B.2 Similarities with Options . 32

B.3 Importance Sampling to update Base Network 33

CHAPTER 1

Introduction

1.1 Reinforcement Learning

A key aspect of any intelligent system, is the ability to make decisions based on a given

input. In reality, these systems often act in a stochastic environment with a goal in

mind. reinforcement learning (Sutton and Barto, 1998) is a method used to approach

this problem when the decision-making system (called the agent) has access to a scalar

signal that captures the desirability of the current scenario with respect to the goal. It

models the problem as a Markov decision process(Puterman, 2014) and attempts to

use this model to achieve its goal. The main components in the model are the notions

of state, action and reward. The agent perceives the state (s) of the environment, it

decides an action (a) to take, then the environment changes based on the action. The

end of this change is marked by the agent receiving a scalar value called the reward (r).

Clearly, the autonomy of the agent lies in the way it selects this action depending on the

observed state. This mechanism is called the policy of the agent often denoted by π and

is conditioned on the state s. The Markov assumption of our model leads us to ignore

past states in the agent’s history while making the current action decision. Since the

agent’s goal is captured in the reward signal, one obvious way for the agent to act would

be to attempt to maximise the cumulative reward. This cumulative reward is called the

return and is denoted by Gt. Very often, directly attempting to maximise this cumulative

reward leads to instability owing to its unboundedness. A practical method to get around

this is to use discounting in order to diminish the importance of our estimate on rewards

far into the future. Thus we have,

Gt = rt + γrt+1 + γ2rt+2 + ...

where γ ∈ (0, 1). The Value V (s) of state s is the expected return from that state. Thus

V (s) = E[Gt|st = s]. MDPs have been studied extensively and approaches have been

introduced to solve them such as value iteration and policy iteration. These approaches

assume use a tabular estimation approach for the Value of a state and solve the MDP

using the Bellman optimality equation, brought about by the Markov property of the

MDP.

1.2 Deep Reinforcement Learning

For decades, RL has been studied using toy examples with a finite state space but often

failed in several real-world scenarios simply due to the vast state space encountered. This

vastness in size was a constant hurdle until the generalization capabilities of deep learning

(DL) (LeCun et al., 2015) came to light. Attempts to utilize deep neural networks as

function approximators in RL were not widely successful until the Deep Q-network

(Mnih et al., 2015) which could learn directly from the raw image of an Atari 2600

game was introduced. Since then several advancements in deep reinforcement learning

(DRL) [Guo et al. (2014); Schulman et al. (2015); Lillicrap et al. (2015); Schaul et al.

(2015); Mnih et al. (2016); van Hasselt et al. (2016); Vezhnevets et al. (2016); Jaderberg

et al. (2017)] have brought about a new age of RL. The general building blocks for

representation learning provided by deep learning provide a differentiable, end-to-end

technique which does not require feature engineering. For example, Convolutional neural

networks (CNNs) [Krizhevsky et al. (2012)] are widely used as a component in image

processing pipelines while Long Short-Term Memory Units (LSTMs) [Hochreiter and

Schmidhuber (1997)] are used to model sequential data efficiently.

1.3 Contributions

Reinforcement learning (RL) algorithms have the common aim of handling decision-

making problems when faced with levels of uncertainty in the outcome. High dimen-

sional and sparse reward environments have been a constant hurdle with several methods

coming up in response. One of these is using previous knowledge of a set of problems

to solve new problems (transfer learning). It is desired to have an absence of ’negative

transfer’, the situation that arises when following the source solution is unfavourable in

the target domain. Another approach used to handle sparse reward environments is by

simplifying the decision space for the agent by adding several levels of action selection

2

(hierarchical reinforcement learning). These levels may be created by including both

spatial and temporal abstractions in the action space.

The major contributions of this work are a transfer learning technique for hierarchical

reinforcement learning based on a ’hard’ attention model for switching between source

task solutions (or sub-policies) and a learnable base network along with an Actor Critic

based implementation of this approach. This paper also explores the utility of the A2T

framework (Rajendran et al., 2017) in a scalable and parallelizable algorithm like A3C.

A significant advantage of this approach over a soft-attention method is that it can be

easily extended to complicated hierarchies with a simple switching structure. We discuss

the framework in Chapter 4, describe the environments used along with our experimental

setup in Chapter 5, and discuss our observations in Chapter 6.

3

CHAPTER 2

Background

2.1 Reinforcement Learning

We assume a finite-horizon discounted Markov decision process (MDP) formulation

, defined by (S,A, P, r, ρ0, γ, T), in which S is the state space, A the action space, P

a transition probability distribution, r : S × A → R a reward function, ρ0 an initial

state distribution, γ ∈ (0, 1] a discount factor, The goal of RL is to maximize the total

expected discounted return Eπ
[∑T

t=0 γ
trt+1|s0 = s

]
with T being the horizon and s0,

the starting state being from the distribution ρ0. This expectation is taken over a policy

π, which is a function of the state s that outputs a distribution over the actions A.

2.2 Hierarchical Reinforcement Learning

Given the task, hierarchical reinforcement learning aims to break down the problem

into simpler subtasks which make decision making easier for the agent. We can make

macro-actions that club a series of actions together over time. A more formal definition

of this macro-action or skill is an option (Sutton et al., 1999b). Options are defined by

tuple of the form O =< I, µ, β > where I is the initiation set: where the option can

begin, µ the option policy: the policy followed when the option is selected, and β the

termination condition: a function of state being the probability of the option terminating.

While making options adds a level of decision making, one can also think of adding

several levels depending on the problem such as in Dietterich (2000) and Parr and Russell

(1998). While effective in simpler domains, it gets harder to define the right hierarchy as

the problem gets more complex. This has driven research in automatically creating such

hierarchies which are then used in solving the problem.

2.3 Asynchronous Advantage Actor Critic

Actor critic algorithms use a parameterized policy πθa(a|s) (the actor) and value function

Vθc(s) (the critic) [Sutton and Barto (1998)] to estimate the policy gradient. Rather than

depending on a Monte-Carlo estimate of return, the critic is used to reduce the variance in

the policy gradient updates. These algorithms use the stochastic policy gradient theorem

(SPGT) [Sutton et al. (1999a)] to solve the return maximimization problem. According

to this theorem, the gradient of the performance objective J(πθ) of a stochastic policy π

with respect to the policy parameters θ is given by:

∇θJ(πθ) =

∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a) da ds

= Es∼ρπ ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)]

(2.1)

where the performance objective J(πθ) is defined as:

J(πθ) =

∫
S
ρπ(s)

∫
A
πθ(s, a)r(s, a) da ds

= Es∼ρπ ,a∼πθ [r(s, a)]

(2.2)

where ρπ(s) is the discounted state visitation distribution . The value function Vθc(st)

is updated by using n-step TD error as: L(θc) =
(
V̂ (st)− Vθc(st)

)2
where V̂ (st) is an

n-step estimate of the return from the current state. That means V̂ (st) is:

V̂ (st) =
t+n−1∑
j=t

γt−jrj + γnV (st+n)

In A3C, we represent policy and value functions using deep neural networks.

Asynchronous Advantage Actor Critic (A3C) [Mnih et al. (2016)] learns policies

based on an asynchronous n-step returns. The k learner threads execute k copies of the

policy asynchronously and the parameter updates are sent to a central parameter server

at regular intervals. While the DQN addresses the issue of temporal correlations in its

updates via Experience replay [Mnih et al. (2015)], these parallel workers ensure that

temporal correlations are broken between subsequent updates owing to the different

threads possibly exploring separate parts of the state space. The objective function for

5

policy improvement in A3C is:

L(θa) = log πθa(at|st) (Gt − V (st))

where Gt is an estimate for the return at time step t. One can think of Gt − V (st) as an

estimate for A(st, at) which represents the advantage of taking action at in state st. This

led to the name asynchronous advantage actor critic.

6

CHAPTER 3

Related Work

Rajendran et al. (2017) introduced a soft-attention method for transfer learning by using

an adaptive convex combination of multiple task solutions in order to speed up learning

in a new scenario. Its robustness to negative transfer was demonstrated mainly in part

due to the addition of a base network while keeping subtask solutions fixed. It is not

immediately clear how this technique will handle scaling to hierarchies.

The Option-critic architecture Bacon et al. (2017) deals with learning options au-

tonomously via gradients and a option selection network. This is a significant step

towards automatically learning skills but is still not a perfect way of forming them due

to the general nature of the formulation. Florensa et al. (2017) is another work that

tries to automatically learn useful, diverse skills in a continuous setting with minimal

supervision.

Learning from previous knowledge is not trivial in part due to the phenomenon

of catastrophic forgetting. A notable recent work addressing this issue is Kirkpatrick

et al. (2017). Rusu et al. (2016) attempts to learn multiple subtasks sequentially while

avoiding the pitfalls of this forgetting.

Concurrent work on Meta Learning Shared Hierarchies (Frans et al., 2018) is also

closely related with the major differences being its lack of fixed subtasks (and subsequent

base network) and the absence of attempts to extending the hierarchies. Another closely

related work is Shu et al. (2018) which also uses a switching network and reuses previous

knowledge by maintaining the entire previous solution as their ’Base Policy’. It also

allows better generalization by using natural language instructions to specify current

goals.

CHAPTER 4

Hierarchical A2T

4.1 Framework

Borrowing terminology from Rajendran et al. (2017), let there be N fixed source tasks

solutions K1, ..., KN while we require a target task solution KT . The source tasks are

not learned online and must be determined apriori. We may refer to these N tasks as

’subtask solutions’ or ’sub-policies’. Throughout the KT training process, these source

task solutions are held fixed. Updating them may lead to catastrophic forgetting of

the previous source tasks solutions as observed empirically in . We also add one more

network KB called the base network that is trained from scratch along with the learning

how to act in the target task. This base network is used to learn behaviour that, when

used in tandem with the subtask solutions, will be able to solve the target task. The

dashed lines in Fig.4.1 show update paths.

We can think of combining these source task solutions in an additive manner as

discussed in Rajendran et al. (2017). While such a formulation is widely expressive,

it may be the case that mixing several solutions in such a way leads to undesirable

intermediate behaviour. One way of maintaining a consistency with the provided skills is

by sampling from a learned distribution depending on the current state and picking one of

the N +1 networks. Assuming we have a multinomial distribution with parameter vector

w̄ = {w1, .., wN , wB}, we have the source task as Eq. 4.1. Thus instead of computing all

N + 1 outputs at once and basing the output on a function of the entire set, the decision

taken at time t only depends on one out of the N + 1 networks.

KT = Ki where i ∼ Multinomial(w̄) (4.1)

Similar to Florensa et al. (2017), the chosen network is attended to for k timesteps where

k is a tunable hyperparameter called the commitment period that changes based on the

problem. For example, a task which requires a higher granularity in switching decisions

could be collecting fruits on an open grid while avoiding mines, whereas one where a

lower granularity would work could be solving a maze.

Figure 4.1: Policy Switching Model

A hard attention model is trained to learn how to switch tasks effectively. This can

be thought of as a policy with the action space having the dimension N + 1 i.e. a policy

πa(s) to pick one among the set of networks K1, ..., KN and KB. This model needs

to estimate w̄ given the state observation s such that
∑

iwi = 1. A natural method of

modeling this w̄ is by a softmax output, thus we have the weights as in Eq.4.3.

f(st; θa) = ēs = (e1,s, e2,s, ..., eN+1,s) (4.2)

wi,s =
ei,s∑N+1
j=1 ej,s

, i ∈ {1, 2, ..., N + 1} (4.3)

This extra step of sampling adds a layer of non-differentiability and estimators like

REINFORCE (Williams, 1992) are required to learn through this. An Actor-critic

approach is followed with the our Critic being an estimate of the Value function (expected

return given the current state) of the entire target policy (πT).

The updates are parallelized in a similar manner to A3C (Mnih et al., 2016). Rollouts

of size b are run at every time step t. These rollouts are used to form our estimates for

the Advantage function and Critic. Let d(t) be the last ’decision point’ at time step t

i.e. the latest point in the past the Attention network was sampled and a sub-policy was

picked. For a constant k if the first time step is t = 0, d(t) = t− (t mod k).

9

∆θa =
t′+B−1∑
t=t′

1t(d(t))
∂ log πa(st, τt)

∂θa
Ât (4.4)

1t(t
′) =

1 t′ = t

0 otherwise

Eq.4.4 is the attention network update for batch size B where τt is network attended

to (either the Base or one of the Subtask Solutions). Thus updates to the attention

network are not done at all time steps. The estimate Ât =
∑b−1

l=0 (γ)lδt+l is independently

calculated for each rollout of size b. δt is the TD-error,

δt = rt + γV (st+1)− V (st)

A critic is also maintained separately for the overall policy. The base network update

follows a similar Actor-Critic approach with the update in Eq.4.5.

∆θb =
t′+B−1∑
t=t′

cs,t
∂ log πb(st, at)

∂θb
Ât (4.5)

Critic updates are done via TD-learning with a n-step return target.

Encouraging exploration while learning via policy parameterization methods is often

done by adding an entropy penalty. One can do the same here with the entropy term

consisting of a linear combination of the attention model’s (πa) entropy and the base

network’s (πb) entropy. This will ensure that the exploration occurs while following the

base network as well as exploration in the policy switching sense.

Hβ = αBHB + αAHA

where HA = Eτ [− log(πa(s, τ))], HB = Ea[− log(πb(s, a))]
(4.6)

10

4.2 Updating πb

Various possibilities exist to update this base network: i) at all times assuming on-policy

updates, ii) with correction for the true off-policy nature of the returns and iii) by updating

the base only when it is attended to.

1. cs,t = 1 : Assuming on-policy updates for the Base network like Rajendran et al.
(2017) is not as safe since the Base network is not used as part of the target solution
continuously. One should note that the in their work, the base network learns to
copy all the parts of the subtask solutions relevant to the target task. This means
that the optimal behaviour for the attention network is to eventually focus on the
base network. As observed empirically, such updates are often unstable here.

2. cs,t = Importance Sampling based trace. Off-policy estimators like Retrace(λ)(Munos
et al., 2016) would learn with much less instability than (1) but the effect would
be the base network copying parts of the subtask solutions entirely.

3. cs,t = 1t(d(t)) : Base updates are more stable but infrequent and trajectory
information is not used to the fullest extent. The base network only comes into
play when required. At all times the network will use the subtask solutions when
required instead of eventually shifting attention to the Base network. We use this
setting in our experiments.

4.3 Choosing the value of k

The commitment period k is a hyperparameter that can be manually chosen and fixed

throughout the training process. We have experimented with k ∈ {1, 3, 10}. Another

way to set k would be to adaptively vary it depending on the current state. This could

be achieved in a similar way to FiGAR (Sharma et al., 2017). The Base network will

have an added ’head’ for a FiGAR policy used to select k from a set of |kfig| choices

e.g. kfig = {1, 3, 10}. Let πk be the k selection policy. We can update this head using a

similar Actor-Critic Approach as used on the Attention head, namely,

∆θk =
t′+B−1∑
t=t′

1t(d(t))
∂ log πk(st, kt)

∂θk
Ât (4.7)

4.4 Architecture

The subtask policies (source networks) are initially learned via a standard RL algorithm

(here A3C) and were modeled as a simple feedforward network. While we could use

11

Figure 4.2: Recurrent Model

a similar feedforward network to model the Base network, one notices the possibility

to utilize the memory capability of LSTMs here as the Base Policy (such as in Mnih

et al. (2016)). By sharing this architecture with the Attention network, we turn it into a

recurrent meta-controller. While the N source task solutions (or skills) used are simple

state functions depending on say n stacked input images (like in Mnih et al. (2015)),

the meta-controller (Attention network) will contain a memory component. Using

a recurrent architecture each individual subtask network would lead to an immense

growth in complexity unless a single multi-tasking network is used such as in Shu et al.

(2018). This drastically reduces the complexity required compared to the subtasks being

represented by recurrent networks as well. One should also note that effective use of a

hierarchically structured subtask requires use of a recurrent network since the attention

network needs to select it for a prolonged duration in order for it to completely carry

out the subtask. To an extent this can be mitigated by using a variable k as mentioned in

Section 4.3.

4.5 Summary

This architecture is meant to be used with a curricula of environments provided for

learning subtasks which can be used effectively in a target task. Essentially, this curricula

is expected to equip the agent with a set of skills which can help solve the target task.

The Base network is expected to take the agent from partially solving the task using the

12

skills, to fully solving it.

Allowing a hierarchical network as one of the source tasks is potentially more

expressive than a single network as a source task. This can easily be seen by looking at

the analogy of a Mixture of Gaussians as being one of the skills. Expecting a feedforward

network to model the each of the individual modes of the distribution along with an

added network to pick between each of these modes is significantly more simplified than

expecting a single network to model the entire distribution.

13

CHAPTER 5

Experimental Setup

The experiments aim to answer the following,

1. Does the technique perform competitively and is it a better way than using pre-
training?

2. Is the base network learning to copy all relevant parts of the subtask solutions as
in Rajendran et al. (2017)?

3. How important is the attention network in selecting between skills?

4. Is the hard attention update appropriate?

5. Is an off-policy estimator required for the Base network?

6. How useful is the Hard Attention Approach in building hierarchies?

We address (1) by running experiments with pretrained networks on our environments.

By having a baseline in our experiments (Fig.6.9) with only the learnt base network we

disprove (2). We attempt to solve (3) by removing the attention network and randomly

sampling between the learnt base network and source networks (Fig.6.9) as well as

randomly sampling the provided sub-polices (Sec.5.2.4). Solutions to (4) and (5) are

demonstrated by showing convergence to a close to optimal solution in our experiments.

By involving a hierarchically constructed subtask as one of the source networks (Fig.

6.6,6.5,6.11,6.14) (6) is addressed.

5.1 Gridworld Environments

Several Gridworlds1 were used to show the effectiveness of the suggested approach at an

intuitive level.

• Puddle World: The agent randomly starts from 4 states and must navigate through
a world with a negative reward ’puddle’. It receives a +10 reward when it reaches
a specified goal state and the episode ends.

1link to the maps on Github

https://github.com/yokian/gym-grid

• Mine World: The agent randomly starts from 4 states and must navigate through
a world with randomly positioned (at every episode) positive and negative reward
tiles. The tiles change to zero reward after being traversed upon (akin to being
’fruit being picked up’ or ’mine being detonated’). There is no specified goal state
and the episode ends after a fixed number of steps.

• Room World: This is used to run the hierarchical RL experiments. The objective
is to traverse all rooms and pick the object from each one. This is challenging due
to the presence of hallways restricting the correct action trajectories. The episode
ends after a maximum of 1000 time steps.

Figure 5.1: Puddle World (ST: subtask) Figure 5.2: Mine World Example (Small)

Figure 5.3: 5 room gridworld (Room World)

For the first two worlds the agent receives a 1 step view around it with the total

observation size being 3x3. The Room World gave the agent a 3 step view with total size

7x7 due to its added complexity and significant partial observability by limiting the view.

The training sizes of the Puddle and Mine Worlds are 14x14 with the Mine World

tests being done on a 28x28 grid. The Room World was a 32x32 sized map.

15

5.1.1 Architecture

Since the tasks discussed are simple, 2 layer MLPs with hidden layers of size 32 were

used for the feature extraction portion without a recurrent archictecture. For the Room

World, owing to the partially observable nature of the environment, we append a 32

dimension LSTM layer after the 2 layer MLP. The Room World experiments used a

shared architecture with separate heads for πb, πa and πk while the first two environments

used separate networks.

5.1.2 Experiments

Incomplete Source Tasks: For the Puddle World, two separate subtasks were trained

with the subtask goals being shown in Fig.5.1. Refer A.3 for further details on training the

skills. The subtasks were used to show the benefit of the policy switching mechanisms

even when the source tasks are not complete solutions.

Versus Pretraining: The Mine World experiments are done in a small training environ-

ment while results are reported on a larger test environment. A ’minesweeper’ mode is

also present where the fruit and mine rewards are swapped. This mode is used to show

the switching mechanisms usefulness in handling multiple variations of the target task.

Scaling to hierarchies: The Room World is used to demonstrate the possibility of a

hierarchical RL approach using this methodology. Three separate skills were trained via

specific pretraining maps. Refer A.3.2 for details.

1. Exit Room : to transition from any point to an exit in the room.

2. Get Object: to pick up an object in the same room.

3. GO & Exit: to pick up an object then exit the room after. This is a hierarchically
structured policy of the first two skills.

Intuitively these choices should be most optimal for this task.

5.2 Doom Environments

While Gridworlds helped to verify that our method worked, we wished to demonstrate its

effectiveness in a more realistic setting also. This was possible with the help of Vizdoom

16

(Kempka et al., 2016).

5.2.1 Custom Maps

We devised similar maps2 to the gridworlds in Doom to show that our method works in

the complex 3D setting as well.

1. Collect Armour: The agent is placed at a random location and orientation in a
square room along with an armour being spawned at a random position. The agent
receives a reward of +1 upon collecting the armour and the episode ends.

2. Exit Room: The agent is placed at a random location and orientation in the room
with a corridor on one side. The agent receives a reward of +1 upon exiting the
corridor and the episode ends.

3. Collect Armour and Exit Room (C&E): The agent is placed at the entrance to
the corridor while an armour is spawned at a random position in the room. The
agent receives a reward of +0.6 on picking up the armor +0.4 upon subsequently
exiting the corridor and the episode ends.

4. n rooms: There are n rooms with an armour in each room. The agent receives
+0.5 on picking up each armour and +1 for collecting the last armour followed
by the episode ending. We run experiments with n = {3, 5}. Thus we consider
the 3 room and 5 room maps to be solved if the score is greater than 1.5 and 2.5
respectively.

Figure 5.4: C&E Map

Figure 5.5: 5 Room Map

5.2.2 Common Parameters

The agent was given 4 actions, namely: No-Op, Turn Left, Turn Right, Move Forward.

There is a constant time penalty of -0.001 per step and an action repetition of 4. The
2link to the custom maps

17

https://www.dropbox.com/sh/voxlp9fi082buue/AAAEgM7KNd7YpR7F-Tw420gia?dl=0

Figure 5.6: 3 Room Map Figure 5.7: 3 Room Agent View

input RGB image of the agent’s egocentric view was converted to a 42*42*1 image by

taking a maximum over the channels. This was subsquently stacked with the view of

three time steps into the past getting a 42*42*4 input similar to Mnih et al. (2016, 2015).

5.2.3 Architecture

We require function approximation for the Base Policy, Value function (critic) and

Attention Network. In Mnih et al. (2016) the Policy Network and Value Network share a

common feature representation pipeline with separate ’heads’ for the Policy and Value

functions. We use a similar architecture here where the three networks share the feature

extraction pipeline with three separate heads. Refer A.1 for more details.

5.2.4 Experiments

All experiments had the same two subtasks given; one to collect an armour in the same

room, and the other to exit the room and reach the end of the connecting corridor.

Versus Pretraining: We also provide as a baseline the performance of the most impor-

tant skill (’col’: Collect Armour) used as pretraining for a vanilla feed-forward network.

One should note that the optimal behaviour for an agent in the n room maps without

memory would be to follow the wall of the map along one particular direction until all

armours are collected. Thus for a feed-forward policy, convergence would mean a lesser

score than for a recurrent policy that can navigate directly to the armour.

18

Scaling to hierarchies: For the more complicated n room maps, we also included as

one of the subtasks a hierarchically structured solution of the C&E map. Thus the optimal

strategy for the agent would be to learn a base policy to navigate the connecting area

between the rooms, followed by using the hierarchical subtask to pick up the armour and

exit the room. Providing the two primary subtasks would help generalize to differently

sized rooms.

Importance of Attention: To demonstrate that πa is an important component of our

model, we provide the average reward obtained over 100 episodes for uniformly sampling

the provided sub-policies.

19

CHAPTER 6

Experimental Results

6.1 Grid worlds

We discuss results for the various Grid worlds below. All experiments use a feed-forward

architecture unless mentioned otherwise in the legend.

6.1.1 Puddle World

Fig. 6.1 shows the episode lengths while training.

Effect of varying k Changing the commitment period k determined the duration of a

skill being followed. Thus the presence of bad skills along with the entropy penalty at the

switching level will cause a tendency to perform poorly at first and slowly improve. The

larger the value of the fixed k often meant more unstable updates since the environment

changes signifcantly after each decision step.

Figure 6.1: Puddle World with k varying

6.1.2 Mine World

The runs shown are:

• f : with the favorable source task (solution in small Mine World)

• u : with the unfavourable source task (’minesweeper’ mode solution in small Mine
World)

• uf : with both favourable and unfavourable tasks

• scratch : training from scratch on the test environment

• directu : with the unfavourable task as the initialisation (similar to pretraining)

Fig. 6.2 shows the total episode rewards. It is clear that using the set of sub-policies

makes the solution robust to the conditions of the test environment.

Figure 6.2: Standard Mode Figure 6.3: ’Minesweeper’ Mode

Figure 6.4: Mine World Results

Figure 6.5: RNN + FF Figure 6.6: RNN

Figure 6.7: Room World experimental results
(FF:Feed forward, RNN: Recurrent

6.1.3 Room World

Scaling to hierarchies: As expected, a recurrent architecture for our controller per-

formed better than a feedforward one. Fig. 6.6 shows the episode length for different

21

values of k with an RNN architecture. Fig. 6.5 shows the best results with the feed-

forward network for comparison. We see that while a variable k via a FiGAR-like

method helped the FF architecture by allowing prolonged sub-policy selection, it was

not adequate to solve the problem.

6.2 Doom Environments

We discuss results on the Doom environments below. Curves denoted by ’stg’ were

provided with the hierarchically structured solution of the C&E map as a skill also.

Utility of Attention Network: The dashed lines are 100-episode averages of random

selection baselines where :

• ’2st’ - 2 subtasks

• ’stg’ - hierarchical solution of C&E map

• ’base’ - trained base network of best performing network (feed-forward)

As mentioned in 5.2.4, these are to show the importance of the attention network

in effectively switching between the available networks. From the random selection

baselines (Figs.6.11, 6.14) we infer that the guidance by the Attention network is

necessary to solve the problem.

Figure 6.8: Collect & Exit (taking mean over workers, shaded portion being standard
error)

22

Versus Pretraining: Training curves on the C&E map (Fig.6.8) shows us that for the

simplest tasks, direct pretraining with the most important skill (’col’ - Collect Armour)

often performs comparable to our method. As the target task gets more complicated,

the benefits of having access to multiple skills at once becomes apparent. This is

demonstrated in the 3 room (Fig.6.9) and 5 room (Fig.6.12) experiments.

Figure 6.9: FF Figure 6.10: RNN

Figure 6.11: 3 room experimental results
(FF:Feed forward, RNN: Recurrent

Scaling to complex scenarios: Providing the hierarchical subtask ’stg’ enabled the

agent to find the optimal path quicker (Fig.6.10). We see that providing the agent with

the decision capability of selecting such a hierarchical subtask for a longer duration

via a recurrent architecture is crucial (check ’stg_k1’ in Fig.6.12 and ’stg_rnn_k1’ in

Fig.6.13).

Figure 6.12: FF Figure 6.13: RNN

Figure 6.14: 5 room experimental results
(FF:Feed forward, RNN: Recurrent

23

CHAPTER 7

Shortcomings and Future work

While we have individual networks for each of the skills here, a more generalizable

formulation such as in Shu et al. (2018) would be beneficial to compare any performance

losses due to generalization. Since our action space for the attention network grows

linearly with number of subtasks, a single multitasking network would address the

problem of an exploding action space. Perhaps using a one hot representation as input

for encoding the current goal would help achieve this.

One drawback to the A2T technique is that it does not address the issue where the

domain slightly changes for a different agent view. Separating the feature extraction

stage and goal directed behaviour stages to reuse high level policy behaviour is a possible

area to explore.

While no Importance Sampling was used , it would be interesting to observe the

gains of using it to update the base policy at all times.

Currently we expected supervision from humans to decide the order of tasks sampled

from. An automated curricula provided by methods such as Svetlik et al. (2017) would

be a worthy direction to pursue.

CHAPTER 8

Conclusion

Thus we have demonstrated the effectiveness of a policy switching network that learns

to attend to the given sub-policies adaptively while learning an auxiliary base network

that acts to fill in the gap in order to optimally coordinate between using the skills. We

also show this framework’s ability to scale to more complicated tasks in a hierarchical

manner.

We believe that this provides a baseline for further work in hierarchical and deep

reinforcement learning.

REFERENCES

1. Bacon, P.-L., J. Harb, and D. Precup, The option-critic architecture. In AAAI Confer-

ence on Artificial Intelligence. 2017.

2. Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value

function decomposition. Journal of Artificial Intelligence Research (JAIR), 13, 227–303.

URL http://dx.doi.org/10.1613/jair.639.

3. Florensa, C., Y. Duan, and P. Abbeel, Stochastic neural networks for hierarchical

reinforcement learning. In Proceedings of the International Conference on Learning

Representations (ICLR). 2017.

4. Frans, K., J. Ho, X. Chen, P. Abbeel, and J. Schulman, META LEARNING SHARED

HIERARCHIES. In International Conference on Learning Representations. 2018. URL

https://openreview.net/forum?id=SyX0IeWAW.

5. Guo, X., S. P. Singh, H. Lee, R. L. Lewis, and X. Wang (2014). Deep learn-

ing for real-time atari game play using offline monte-carlo tree search planning.

Advances in Neural Information Processing Systems 27: Annual Conference

on Neural Information Processing Systems 2014, December 8-13 2014, Mon-

treal, Quebec, Canada, 3338–3346. URL http://papers.nips.cc/paper/

5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.

6. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural compu-

tation, 9(8), 1735–1780.

7. Jaderberg, M., V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu (2017). Reinforcement learning with unsupervised auxiliary tasks. To

appear in 5th International Conference on Learning Representations.

8. Kempka, M., M. Wydmuch, G. Runc, J. Toczek, and W. JaÅŻkowski, Vizdoom:

A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE

Conference on Computational Intelligence and Games (CIG). 2016.

26

http://dx.doi.org/10.1613/jair.639
https://openreview.net/forum?id=SyX0IeWAW
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning

9. Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,

K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. (2017). Overcoming

catastrophic forgetting in neural networks. Proceedings of the National Academy of

Sciences, 201611835.

10. Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information processing systems

(NIPS), 1097–1105.

11. LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. Nature, 521(7553),

436–444.

12. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra (2015). Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971.

13. Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning. In Proceed-

ings of the 33nd International Conference on Machine Learning, ICML 2016, New York

City, NY, USA, June 19-24, 2016. 2016. URL http://jmlr.org/proceedings/

papers/v48/mniha16.html.

14. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-

tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis (2015). Human-level control through deep reinforcement learning. Nature,

518(7540), 529–533. URL http://dx.doi.org/10.1038/nature14236.

15. Munos, R., T. Stepleton, A. Harutyunyan, and M. Bellemare, Safe and efficient off-

policy reinforcement learning. In Advances in Neural Information Processing Systems

29. 2016.

16. Parr, R. and S. J. Russell, Reinforcement learning with hierarchies

of machines. In M. I. Jordan, M. J. Kearns, and S. A. Solla

(eds.), Advances in Neural Information Processing Systems 10. MIT

Press, 1998, 1043–1049. URL http://papers.nips.cc/paper/

1384-reinforcement-learning-with-hierarchies-of-machines.

pdf.

27

http://jmlr.org/proceedings/papers/v48/mniha16.html
http://jmlr.org/proceedings/papers/v48/mniha16.html
http://dx.doi.org/10.1038/nature14236
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines.pdf
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines.pdf
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines.pdf

17. Puterman, M. L., Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

18. Rajendran, J., A. S. Lakshminarayanan, M. M. Khapra, P. Prasanna, and B. Ravin-

dran (2017). Attend, adapt and transfer: Attentive deep architecture for adaptive transfer

from multiple source tasks. To appear in 5th International Conference on Learning

Representations.

19. Rajendran, J., A. S. Lakshminarayanan, M. M. Khapra, P. Prasanna, and B. Ravin-

dran, Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer

from multiple sources in the same domain. In Proceedings of the International Confer-

ence on Learning Representations (ICLR). 2017.

20. Rusu, A. A., N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell (2016). Progressive neural networks.

CoRR, abs/1606.04671.

21. Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2015). Prioritized experience replay.

4th International Conference on Learning Representations.

22. Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel (2015). Trust region

policy optimization. CoRR, abs/1502.05477.

23. Sharma, S., A. S. Lakshminarayanan, and B. Ravindran (2017). Learning to re-

peat: Fine grained action repetition for deep reinforcement learning. To appear in 5th

International Conference on Learning Representations.

24. Shu, T., C. Xiong, and R. Socher, Hierarchical and interpretable skill acquisition in

multi-task reinforcement learning. In International Conference on Learning Representa-

tions. 2018. URL https://openreview.net/forum?id=SJJQVZW0b.

25. Sutton, R. S. and A. G. Barto (1998). Introduction to reinforcement learning. MIT

Press.

26. Sutton, R. S., D. A. McAllester, S. P. Singh, and Y. Mansour, Policy gradient methods

for reinforcement learning with function approximation. In Advances in Neural Informa-

tion Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 -

December 4, 1999]. 1999a.

28

https://openreview.net/forum?id=SJJQVZW0b

27. Sutton, R. S., D. Precup, and S. Singh (1999b). Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artificial intelligence,

112(1-2), 181–211.

28. Svetlik, M., M. Leonetti, J. Sinapov, R. Shah, N. Walker, and P. Stone, Automatic

curriculum graph generation for reinforcement learning agents. In Proceedings of the

31st AAAI Conference on Artificial Intelligence (AAAI). San Francisco, CA, 2017. URL

http://www.cs.utexas.edu/users/ai-lab/?svetlik:aaai17.

29. van Hasselt, H., A. Guez, and D. Silver, Deep reinforcement learning with double

q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,

February 12-17, 2016, Phoenix, Arizona, USA.. 2016. URL http://www.aaai.

org/ocs/index.php/AAAI/AAAI16/paper/view/12389.

30. Vezhnevets, A., V. Mnih, S. Osindero, A. Graves, O. Vinyals, J. Agapiou,

and K. Kavukcuoglu, Strategic attentive writer for learning macro-actions.

In Advances in Neural Information Processing Systems 29: Annual Con-

ference on Neural Information Processing Systems 2016, December 5-10,

2016, Barcelona, Spain. 2016. URL http://papers.nips.cc/paper/

6414-strategic-attentive-writer-for-learning-macro-actions.

31. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine learning, 8(3-4), 229–256.

29

http://www.cs.utexas.edu/users/ai-lab/?svetlik:aaai17
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://papers.nips.cc/paper/6414-strategic-attentive-writer-for-learning-macro-actions
http://papers.nips.cc/paper/6414-strategic-attentive-writer-for-learning-macro-actions

APPENDIX A

Training Parameters

A.1 Architectural Choices

The Doom experiments used the following architecture.

Visual Encoder: The 42x42x3 RGB image was changed to 42x42x1 by taking the

maximum across the channels. This input was stacked with past frames into a 42x42xn

input where n was 4. This was fed into a 4 consecutive convolutional layers (CNNs)

with each having 32 filters of size 3x3 and stride 2.

FF Controller: For the feed-forward experiments, the visual encoding was flattened and

fed into a 256 dimension feed-forward (fully connected) network layer.

LSTM Controller: For the LSTM experiments, the visual encoding was flattened and

fed into a 256 dimension single layer LSTM network.

Attention, Base and FiGAR Policies: Depending on whether the LSTM controller was

used, these were modeled by separate Fully-Connected (FC) layers given input as the

flattened version of the Feature Extraction pipeline (or controller output) as the selection

space (πb : |A|, πa : K, πk : |kfig|).

Value function: The flattened version of the feature extractor (or controller output) was

fed into an FC layer with a scalar output to represent V (s).

A.2 Miscellaneous Stabilizing Tricks

• It was empirically observed that reducing the variance of the policy update by
limiting the bootstrap horizon of the Advantage estimate (Ât) to the next decision
point helped in many of the experiments. This slows down learning, but involves
more stable updates.

• The LSTM controller is a crucial step in getting the model to work with hierarchi-
cally structured subtasks. This is likely due to the need to decide to attend for a
prolonged duration to these networks in order to completely carry out the skill.

• When subtasks solutions provided by A3C were seemingly too diffused due to
learning with an entropy bonus, it benefitted us to import a greedy version of the
subtask solution as a skill.

A.3 Pretraining Environments

Figure A.1: Gridworld Object Map

A.3.1 Doom Skills

The skills were trained via A3C using the following maps,

1. Collect Armour: The agent is placed at a random location and orientation in a
square room along with an armour being spawned at a random position. The agent
receives a reward of +1 upon collecting the armour and the episode ends.

2. Exit Room: The agent is placed at a random location and orientation in the right
room in Fig.5.4 with a corridor on one side. The agent receives a reward of +1
upon exiting the corridor and the episode ends.

A.3.2 Gridworld Skills

The pretraining map used is Fig. A.1 which is randomised at the start of an episode by

having the wall and gap randomly placed along with the map rotating by 90◦half the

time. The agent view is shown by the yellow dashed box.

1. Collect Object: The agent spawns at the gap and receives a reward on reaching
the object and the episode ends.

2. Exit Room: The agent is placed at a random location and orientation in the right
room in Fig.A.1 with a corridor on one side. The agent receives a reward upon
exiting the corridor and the episode ends.

31

APPENDIX B

Extended analysis of HA2T

B.1 Major Differences from A2T

The commitment period k introduces a temporal consistency to subtask selections. While

A2T (Rajendran et al., 2017) has a convex combination of the source task solutions, this

may create some inconsistencies in combining them. For example, consider a policy

that learns to move left to avoid an obsstacle versus one that moves right. A convex

combination of such a policy distribution could potentially over a few time steps be in

the middle, thus encountering the obstacle head on. Picking one or the other for k time

steps yields a system that agrees more with either subtask solution. While a recurrent

network could in practice learn this behaviour with k = 1, providing the network with

the option to decide is beneficial (as shown in Fig. 6.5). When k = 1 we have,

πT (st) = w0,tπb(st) +
∑
i

wi,tπi(st) (B.1)

In this case our framework is equivalent to the A2T method (Rajendran et al., 2017) with

our more stable base update (Eq. 4.5, Sec. A.2) enabling us to use this method for a

stable update with A3C (which would not be possible otherwise).

B.2 Similarities with Options

A common way to declare extended actions in RL is by using the Option framework

(Sutton et al., 1999b). Options are defined by the tuple < µ, I, β >. We can attempt

to restate our framework in terms of the Option framework as well. The agent is given

several options at every state equal in number to the sub-policy set times the number of

options for k (that is, I = S). The sub-policies avaiable to the attention network can be

thought of as the option policy. The termination condition (β) is simply a function of

time where it ends after k steps.

B.3 Importance Sampling to update Base Network

We show a direction to implement importance sampling.

When k ≥ 1 with td the decision point for time step t (this implies td ≤ t):

πT (st) = w0,tdπb(st) +
∑
i

wi,tdπi(st) (B.2)

Note that if k is a constant, then d(t) = t− (t mod k). Now for the target network,

PT (ad(t), ad(t)+1, ..., at) = w0,d(t)

t∏
r=d(t)

πb(ar|sr)p(sr|ar−1)+
∑
i

wi,d(t)

t∏
r=d(t)

πi(ar|sr)p(sr|ar−1)

(B.3)

For the base network,

Pb(ad(t), ad(t)+1, ..., at) =
t∏

r=d(t)

πb(ar|sr)p(sr|ar−1) (B.4)

Thus the importance sampling factor for an update of trajectory from d(t) to t is,

cs =
Pb(ad(t), ad(t)+1, ..., at)

PT (ad(t), ad(t)+1, ..., at)
(B.5)

=
1

w0,d(t) +
∑

iwi,d(t)
∏t

r=d(t) ci,s(ar|sr)
(B.6)

where ci,s(a) = πi(a)
πb(a)

. This is a naive method which we can use to scale updates on each

trajectory portion.

33

	THESIS CERTIFICATE
	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	Reinforcement Learning
	Deep Reinforcement Learning
	Contributions

	Background
	Reinforcement Learning
	Hierarchical Reinforcement Learning
	Asynchronous Advantage Actor Critic

	Related Work
	Hierarchical A2T
	Framework
	Updating b
	Choosing the value of k
	Architecture
	Summary

	Experimental Setup
	Gridworld Environments
	Architecture
	Experiments

	Doom Environments
	Custom Maps
	Common Parameters
	Architecture
	Experiments

	Experimental Results
	Grid worlds
	Puddle World
	Mine World
	Room World

	Doom Environments

	Shortcomings and Future work
	Conclusion
	Training Parameters
	Architectural Choices
	Miscellaneous Stabilizing Tricks
	Pretraining Environments
	Doom Skills
	Gridworld Skills

	Extended analysis of HA2T
	Major Differences from A2T
	Similarities with Options
	Importance Sampling to update Base Network

