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1 Aim
To measure performances of rate 0.5 error correcting codes for LDPC and Convolutional codes in the
QPSK and 16QAM modulation schemes over an optical channel simulated by means of Optilux.

1.1 Encoder Decoder Used

The proposed FEC scheme is a concatenation of an outer hard decision BCH code and an inner LDPC
code. The inner IRA (Irregular Repeat Accumulate) LDPC codes are those proposed by the second
generation satellite digital video broadcasting standard with rate 1

2
, which leads to an FEC overhead

of 100%.

2 Introduction
The development of Error control codes have increased the resistance of Digital communication systems
to noise drastically. Error control codes can be thought of as a processing done on the message bits to
introduce some redundancy or extra information before transmitting which is used to check for errors
at the decoding end of the communication system. e.g. for a rate 0.5 code, we introduce k extra bits for
every k message bits during transmission so that the information rate is k

k+k
= 0.5 (100% Overhead).

Since improving these Error control codes implies we can transmit data reliably at lower SNRs in
an digital communication system, a lot of work has been done exploring various coding methods. Here
we examine the performance of Convolutional Codes and LDPC codes (a type of Linear Block Code)
used in transmission for the QPSK and 16QAM Modulation schemes over an optical channel.

2.1 Convolutional & LDPC codes

Convolutional codes are a popular variety of Error-Correction codes that were almost always preferred
over other coding schemes before the outbreak of LDPC codes. Turbo codes, which are a class of Con-
volutional codes, have shown to perform closely to the Shannon’s limit. Hence, these codes have a close
competition with the state-of-the-art FEC LDPC codes. As the name suggests, Convolutional codes
are obtained by convolving the incoming-message bits with a binary sequence known as the Generator
polynomial to obtain the output sequence or codeword. The Viterbi-algorithm is the most famous
algorithm that enabled efficient decoding of Convolutional codes before Turbo codes were found. Note
that Turbo codes are also Convolutional codes that differ from the Viterbi-Convolutional codes only in
the way they are decoded. Turbo codes have shown good performance with higher Constraint-lengths
whereas the Viterbi-decoding requires the Constraint length to be short for otherwise the algorithmic
complexity is very high. For Viterbi-decoding of convolutional codes, the algorithmic complexity in-
creases exponentially with Constraint length. Nevertheless, Viterbi algorithm is still widely used for it
is the most-efficient algorithm that gives the Optimal solution. i.e, the best estimate of the codeword
(Maximum-Likelihood).
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LDPC codes are a subclass of Linear block codes that have come to prominence during the 1990s with
the advancement of computational capability and compete with Turbo codes as modern codes which
nearly reach the theoretical maximum noise threshold (the Shannon limit). They differ from normal
Linear Block codes in their iterative decoding method made possible by the sparsity (low number of
ones) of their parity check matrix (H). For further information, refer [1] and [2].

3 Encoding & Decoding Algorithms

3.1 Convolutional coding

3.1.1 Encoding

In Convolutional coding, as the name suggests, the message or input bits are convolved with the so called
Generator polynomials to obtain the output sequence known as the codeword. The Constraint length of
a Convolutional code can be defined as the number of input bits required to produce the current output
bit. Typically, this number is less than or equal to 7. The current output bit is produced by XOR-ing
the current input bit with a few of the previous input bits. For this purpose, a length-7 constrained CC
requires a 7-bit register to store the last 6-input bits with the current incoming bit.

Figure 1: Rate-1/2 Convolutional encoder used in our case, Constraint length= 7

The matlab function that defines this encoder is poly2trellis(7,[171,133]). The first parameter in the
function is the constraint length that is equal to 7 which is the no. of input bits required to specify the
current output bit or it is the no. of delay elements(D-flipflops) in the encoder +1.

The numbers within the square brackets represent the generator polynomials(in octal form) for each
of the two output ports. The generator polynomial for the upper output is given by 1+D+D2+D3+D6

which is simply represented as (1111001)2 which is (171)8 in octal form.
Similarly, polynomial for the lower output is 1 + D2 + D3 + D5 + D6 which is (1011011)2 and is

(133)8 in the Octal representation.
Let the incoming message bit be u[k], u[k-1] is the previous message bit and u[k-2] is last to last bit

and so on.
Output at the upper port(gp1=171) : op1[k] = XOR(u[k], u[k − 1], u[k − 2], u[k − 3], u[k − 6])
Output at the lower port(gp2=133) : op2[k] = XOR(u[k], u[k − 2], u[k − 3], u[k − 5], u[k − 6])
Net output bits produced for the current input bit : (op1[k], op2[k])

3.1.2 Viterbi decoding

The Viterbi decoding of Convolutional codes uses a dynamic programming approach to find efficiently,
the Minimum-Distance path or the path which minimizes the error between one of the pre-defined set of
codewords and the received noisy codeword in what is known as the Trellis diagram. This is also known
as Maximum-likelihood(ML) decoding. In practice, the complexity(∼ 2k) of ML-decoding increases

2



Figure 2: Trellis Diagram Example (Constraint length =3)

exponentially with the codeword length(k), if not for the Viterbi algorithm. The Viterbi algorithm does
it in linear time with the codeword length, k.

The path which gives the least accumulated error till that node starting from the source node is
remembered at every node. Let, the Trellis points shown in the diagram be represented in a matrix
with index i for the four rows(#states in each level) and j for the columns.

Min_path(i, j) = Minimum[Min_path(k, j − 1) +Dist((k, j − 1), (i, j))]

k runs from 1 to 4 i.e, nodes in the previous level or column. Solving this equation recursively using
dynamic programming is an efficient way of finding the most-likely codeword.

3.2 LDPC coding

Figure 3: LDPC scheme used

The LDPC scheme used is a concatenation of a BCH code and an LDPC code used by the DVB-S2
standard. The BCH code is used to correct the errors that might slip through the LDPC code. (G)

The encoder output is similar to one generated by a Linear Block Code with Generator matrix as
codeword (c) is related to message (m) as c = mG where m is 1 × k and G is k × n , k being the
message length and n being the codeword length.

The encoder can be thought of as converting the H matrix (the n− k×n parity check matrix) into
a G matrix (k × n) and forming the codeword like a normal Linear Block code. Since the H matrix
is very large and sparse this involves comparitively high memory overheads and computational power.
Several Efficient encoding techniques have been developed [3] but their outputs are equivalent to this.

The decoder is described in the flowchart with the decoding process being carried out for each
individual received codeword. The received codeword is in the form of a vector of length n of LLR
values for each bit found by the QAM demodulator. The Message Passing decoding algorithm (MPA)
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can be represented well by means of a Tanner graph which is an LDPC code representation with n− k
check nodes for the parity check matrix constraints, n variable nodes for the individual codeword bits
and edges joining the variable nodes and the check nodes to show a link between a code bit and a parity
check constraint ( i.e. a one in the H matrix). The MPA algorithm uses a form of the Turbo principle
to send information between the nodes after which the LLR value is calculated for each codeword bit.
A hard decision is made on this LLR value and the estimated codeword is checked to comply with the
parity check matrix. This process is iterated either until a suitable codeword is found or the number of
iterations reaches a specified maximum (50 in our simulations).

Figure 4: LDPC Encoding Algorithm Figure 5: LDPC Decoding Algorithm

4 Simulation & Results (Matlab)
We used the DVB-S2 standard for the inner LDPC code and an existing demo for the encoder/decoder
system present in Matlab using the communication systems toolbox was modified to allow different
rates and constellations. In our simulations we used the comm.LDPCEncoder and comm.LDPCDecoder
objects from the comm Matlab toolbox.

The inbuilt Matlab functions were used for convolutional coding and Viterbi decoding with the
following parameters:

Code Rate = 1/2
Constraint length = 7
p1 = [1 1 1 1 0 0 1];
p2 = [1 0 1 1 0 1 1];
A few codewords of size 64800 bits each were generated offline in Matlab for the LDPC and Con-

volutional codes which were used for the simulation in Optilux for the QPSK and 16QAM modulation
schemes.

For the simulation, optical impairments were modelled namely CD (80km), frequency offset and
phase noise and were compensated for. Conversion between OSNR and Es/No were done by

OSNR = p× Rs

2Bref

× Es

No

where p = 1(Single Pol.),Rs = 25Gbd and Bref = 12.5GHz.
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4.1 QPSK

Figure 6: BER vs Es/No, rate 0.5 codes (QPSK) Figure 7: # Iterations vs Es/No

Net Coding Gain of rate 0.5 LDPC Codes

BER NCG (Soft CC) NCG (PreFEC)
10−3 ∼1.35dB ∼7.75dB
10−5 ∼2.0dB ∼10.2dB

4.2 16QAM

Figure 8: BER vs Es/No, rate 0.5 codes (16QAM) Figure 9: # Iterations vs Es/No

Net Coding Gain of rate 0.5 LDPC Codes

BER NCG (Soft CC) NCG (PreFEC)
10−3 0.6dB 5.8dB
10−4 0.9dB ∼6dB
10−5 ∼0.5dB −
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5 Conclusions
We see how Forward Error Correction (FEC) Codes help get a much better BER at lower SNR values
than simply sending the message bits via QAM modulation with hard decision decoding.

6 Future Progress
We may also obtain results for various rates by puncturing the LDPC code. This can be done for rates
just above 0.5 by modifying the parity check matrix accordingly.

We could further experimentally verify the results using an appropriate hardware setup.
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